

Aktuelles aus dem IFA

- > Ringversuchstermine
- Ringversuchsentwicklung
- Praxishilfen
- Neue Methoden

Erfahrungsaustausch der Gefahrstoffmessstellen Franziska Nürnberger | 27. September 2023

Ringversuchstermine 2024

Ringversuch	Ohne eigene Probenahme	Mit eigener Probenahme	
Organische Lösemittel	-	2021.02.2024	
Anorganische Säuren	2021.03.2024		
Metalle auf Filtern	Juli/August 2024	-	
VOC mit Thermodesorption	September 2024	10.09.2024	
Aldehyde	November 2024	1213.11.2024 1314.11.2024	

Termine für die Test-Ringversuche PAK und Isocyanate werden später bekannt gegeben

RV PAK: Überblick

Ziel

Entwicklung und Validierung von LC- und GC-Methoden für ausgewählte PAK

Etablierung eines Ringversuches

Aktueller Stand

Wechsel des Filtermaterials: Von Quarzfaser zu PTFE

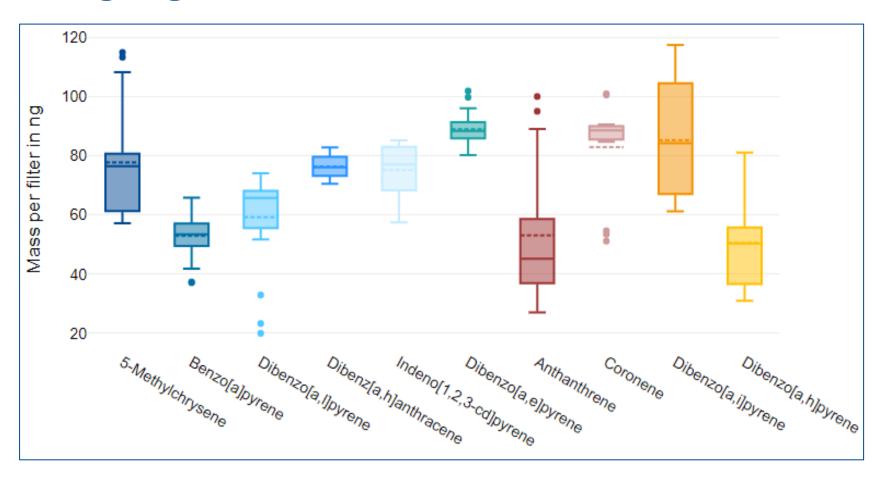
Filterserie verschickt

Nächste Schritte

Auswertung der Filterserie

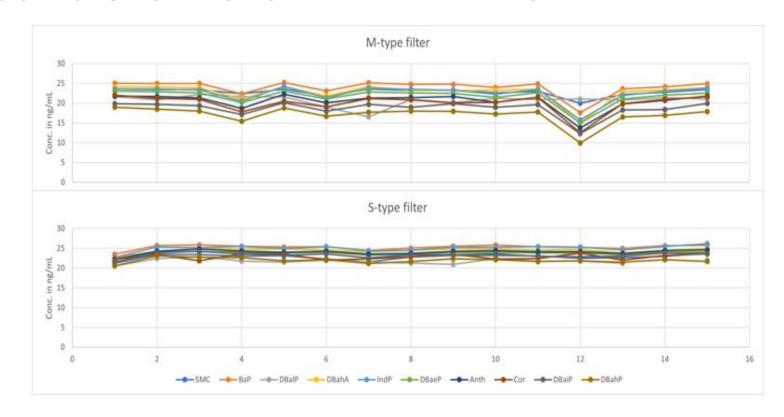
Festlegung der finalen Belegungsbedingungen für den Testringversuch

Stabilitätsmessungen


Ziel für 2024

Testringversuch

RV PAK: Zweite Belegungsserie auf Quarzfaserfiltern


- Streuung recht hoch, aber
 Verbesserung zu erster Serie durch
 Dosierung mit Multipette statt
 Dosiereinheit
- Quarzfaserfilter aber nicht optimal
- Wechsel auf PTFE-Filter

RV PAK: Interne Qualitätskontrolle mit PTFE-Filtern

- Dritte Serie mit Filtern zwei verschiedener Hersteller
- Bessere
 Reproduzierbarkeit und
 Robustheit bei PTFE Filtern
- Reproduzierbare
 Dosierung auf den
 Filtern, aber
 unterschiedliche
 Wiederfindungsraten

RV Isocyanate: Überblick

Ziel

Etablierung eines Ringversuchs für Isocyanate auf Filtern

Aktueller Stand

- Erste Überlegungen
- Informationssammlung
 - Rückmeldung von Interessenten zur Methodik

Ziel für 2024

Vergleichsmessung mit Homogenitätstest mit kleiner Anzahl an Interessenten

Haben Sie Interesse bei der Entwicklung des Ringversuches mitzuwirken?

Dann sprechen Sie mich gern an.

Ringversuch Isocyanate: Erste Überlegungen

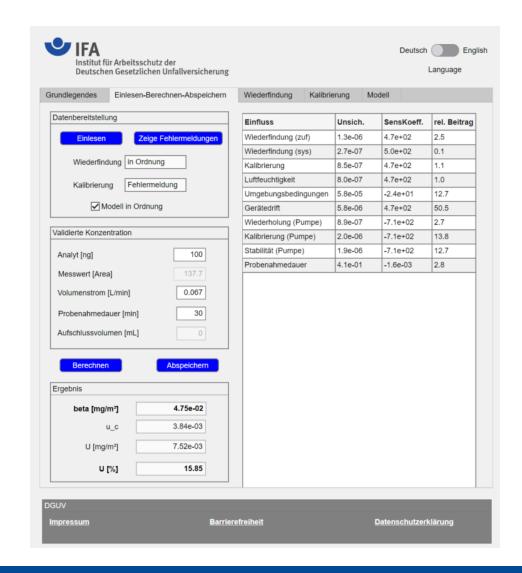
- Glasfaserfilter (37 mm) imprägniert mit 1-(2-Methoxyphenyl)piperazin (MP)
- Versand entweder in Filterkapsel oder stabilisiert in Desorptionslösung (MP + Acetonitril)
- Mögliche Analyten
 - 2,4-Diisocyanattoluol (2,4-TDI)
 - 2,6-Diisocyanattoluol (2,6-TDI)
 - Diphenylmethan-4,4'-diisocyanat (4,4 '-MDI)
 - Hexamethylen-1,6-diisocyanat (HDI)
 - Isophorondiisocyanat (IPDI) (natürliches Isomerengemisch)
 - 1,5-Naphthylendiisocyanat (NDI)
- Konzentrationsbereich: 0,1 2 AGW (Doppelfilter bei hohen Konzentrationen nötig)

Praxishilfen

Informationsportal zu krebserzeugenden Gefahrstoffen

https://www.dguv.de/ifa/praxishilfen/taetigkeiten-mit-krebserzeugenden-gefahrstoffen/index.jsp

- Bündelung, Aktualisierung und umfangreiche Ergänzung bereits verfügbarer Informationen zu Tätigkeiten mit krebserzeugenden Gefahrstoffen
- Online seit Juli 2022
- Informationen werden sukzessive erweitert und bei Bedarf aktualisiert
- Fokus Stoffinformationen aktuell zu 14 Gefahrstoffen verfügbar
- u. a. Einstufung, Messverfahren, Expositionsdaten aus der IFA-Expositionsdatenbank, Schutzmaßnahmen



Messunsicherheitsservice-Tool "MUST"

- <u>Datenbereitstellung:</u>
 Einlesen, Fehlermeldungen
- Validierte Konzentration:

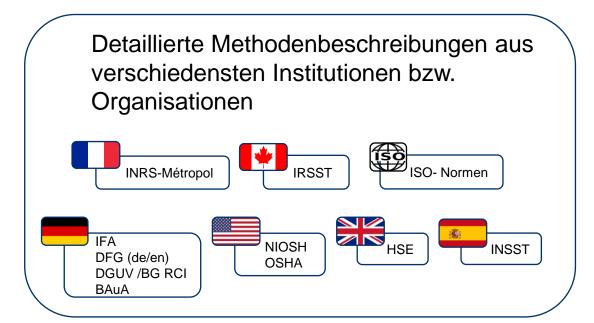
 Eintragen aller relevanten Parameter zur untersuchten Konzentration/Masse
- Angabe aller Einflussgrößen:
 Mit genauer Höhe, rel. Beitrag und Sensitivitätskoeffizienten
- Ergebnis: beta, kombinierte Standardunsicherheit, erweiterte Messunsicherheit

Software und Datenfiles

 "MUST" (.exe)-Datei kann bald kostenlos von der IFA-Webseite heruntergeladen werden: https://mustdownload.ifa.dguv.de/

 Downloadgröße ca. 2,5 GB (MATLAB Runtime-Umgebung); Download Ordner enthält Datenblätter in denen eigene Daten aus Verfahrensvalidierung hinterlegt werden können

 Anwendungshandbuch (DE/ENG) wird bis Oktober 2023 folgen, Erklärungen und Webseite: https://www.dguv.de/ifa/praxishilfen/praxishilfen-gefahrstoffe/software-must/index.jsp


• Hilfe, Unterstützung und Fragen an: must@dguv.de

GESTIS-AMCAW (Analytical methods for chemical agents at workplaces)

- Enthält geeignete validierte Methoden zur Analyse von Gefahrstoffen am Arbeitsplatz
- 126 besonders relevante chemische Verbindungen des Arbeitsschutzes
- Ausschließlich in englischer Sprache verfügbar

Beurteilung der Messverfahren anhand von:

- DIN EN 482
- DIN CEN/TR 17055
- → Einstufung in Kategorie A bis C

https://dguv.de/ifa/gestis/gestis-analysenverfahren-fuer-chemische-stoffe/bewertung-derverfahren/index.jsp

https://amcaw.ifa.dguv.de/

Was bietet die GESTIS-AMCAW?

Kopf

- CAS- und EINECS No.
- Limit values (8 h, short term)
- → Bereiche der GW, welche für den Stoff in der GESTIS ILV aufgeführt sind. (Zukünftige Schnittstelle)

Was bietet die GESTIS-AMCAW?

Kopf

- CAS- und EINECS No.
- Limit values (8 h, short term)
- → Bereiche der GW, welche für den Stoff in der GESTIS ILV aufgeführt sind. (Zukünftige Schnittstelle)

Allgemeiner Teil:

Methoden

- Methodenname
- Sprache
- Erscheinungsdatum
- Analysentechnik

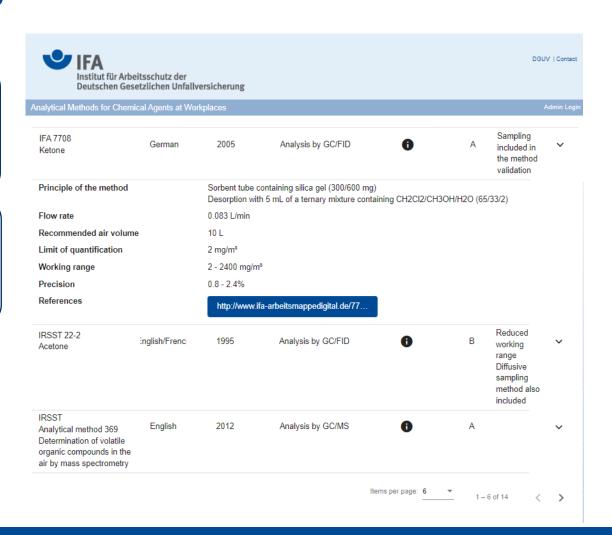
- Grenzwerte
- Einstufung
- Bemerkungen

Was bietet die GESTIS-AMCAW?

Kopf

- CAS- und EINECS No.
- Limit values (8 h, short term)
- → Bereiche der GW, welche für den Stoff in der GESTIS ILV aufgeführt sind. (Zukünftige Schnittstelle)

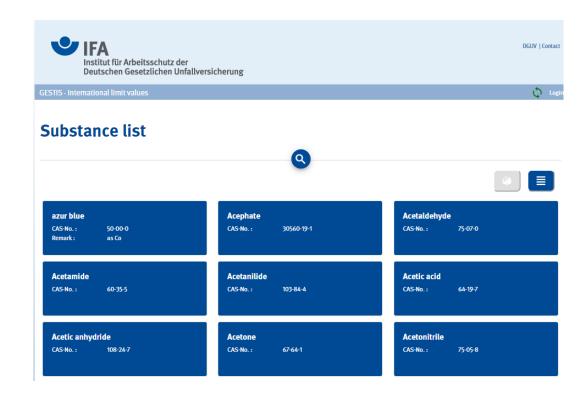
Allgemeiner Teil:


Methoden

- Methodenname
- Sprache
- Erscheinungsdatum
- Analysentechnik

- Grenzwerte
- Einstufung
- Bemerkungen

Methodenbeschreibung der wichtigsten Kenndaten


- Prinzip der Methode
- Probenahmebedingungen
 - Flussrate und empfohlenes Luftvolumen
 - Arbeitsbereich
 - Erweiterte Messunsicherheit
 - Kleinste Konzentration (LOD/LOQ)
- Link zur Originalquelle

GESTIS – ILV: Neuprogrammierung

- Ziel: Webanwendung unter Berücksichtigung aktueller Standards
 - Häufigere Aktualisierung und Wartung
 - Reduzierung des Pflegebedarfs
 - optionale Berücksichtigung weiterer Systeme in GESTIS (z. B. AMCAW)
- Ersatz der Apps durch responsive Webanwendung
- übersichtliche Darstellung in modernem Design
- Verbesserte inhaltliche Aktualität durch
- häufigere Updates
- Option der Fehlerbehebung in "Echtzeit"
- Herausforderung: Datenmigration aus dem Bestandsystem

GESTIS – ILV: Konzept der internationalen Partner

Ziel: Pflege bestehender Listen und Erweiterung durch Aufnahme weiterer Länder

Aufnahme neuer Landeslisten

umfangreiche Ersteingabe durch Fachanwender im IFA

Pflege bestehender Listen

Projektpartner aus den einzelnen Ländern:

- Passwort geschützter Zugriff nur auf individuelle Landesliste im Pflegetool der Datenbank
- Aktualisierungen, Hinzufügen oder Löschen von länderspezifischen Eingaben mit anschließender Übermittlung an das IFA

Übernahme der Änderungen und weitere Pflege

Fachanwender im IFA:

- Plausibilitätsprüfung der Änderungen (Vier-Augen Prinzip)
- Release der Aktualisierungen am Ende jeden Quartals (oder optional sofort)
- Pflege der verlinkten Hintergrunddokumente (Partnerinstitutionen, Bibliography, Aktualitätsliste)

Neue Methoden

Chrom(VI): Vergleich neues und altes Verfahren

Methodenparameter	Photometrie (IFA AM 6665)	Ionenchromatographie (IFA AM 6664)	
Probenahmekopf	GSP		
Probenahmeluftvolumen	1200 L (10 L/min über 120 min)		
Filter	Quarzfaser (37 mm Ø)	PTFE Membranfilter (37 mm Ø)	
Lagerzeit vor PN	1 Jahr	2 Wochen	
Filterüberführung	nach Transport im Labor	nach Probenahme vor dem Transport	
Lagerzeit nach PN	umgehend in das Labor		

37 mm Quarzfaserfilter

37 mm PTFE-Filter + 10 mL Stabilisierungslsg.

Chrom(VI): Vergleich neues und altes Verfahren

	Photometrie	Ionenchromatographie	
Extraktionslösung	NaOH / NaCO ₃	NH ₄ SO ₄ / NH ₃	
	pH 13	pH 9,5	
Bestimmungsgrenze	2,0 μg/L (absolut)	0,23 μg/L (absolut)	
	0,17 μg/m³ (1,2 m³ PN-Volumen)	0,0019 μg/m³ (1,2 m³ PN-Volumen)	
Kalibrierbereich	2,0 μg/L – 380 μg/L	0,50 μg/L – 50 μg/L	
	0,17 μg/m³ - 32 μg/m³	0,0042 μg/m³ - 0,42 μg/m³	
Kalibrierfunktion	linear		
Eignung nach TRGS 402	bedingt geeignet 0,1 μg/m³ < BG < 1,0 μg/m³	geeignet BG ≤ 0,1 μg/m³	

Kanisterprobenahmeverfahren

- Sammlung von VVOC und VOC
- Validierung eines Messverfahrens zur Bestimmung von Ethylenoxid
- Bisherige Verfahren erfüllen Anforderungen an Bestimmungsgrenze und Probenstabilität nicht, (TK: 2 mg/m³ bzw. 1 ppm)
- Neues Verfahren mit unzersetzter Sammlung in Kanistern
 - Edelstahlkanister mit Volumina von 1 und 3 L
 - Chemische inert durch hydrierte, amorphe Siliziumbeschichtung
 - Kanister im Labor auf Restdruck von 10 mbar evakuiert
 - Probenahme mittels kritischer Düsen (PN-Dauern von min bis h)
 - 1-L-Kanister: 8 ml/min über 2 Stunden
- Analyse mittels TD-GC-FID

<u>Legende</u>

Inlet Einlass

Verbindung (Inlet-mMFC)

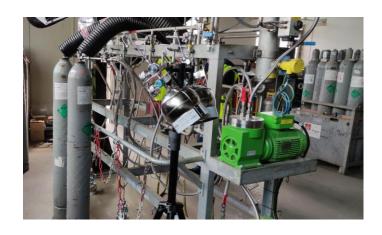
Manometer des mMFC

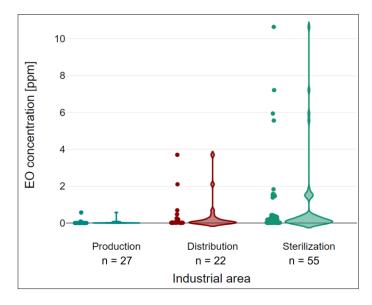
mMFC (mechanischer Massenflussregler)

Drehventil

Kanistergerüst

Manometer des Kanisters


Edelstahlkanister

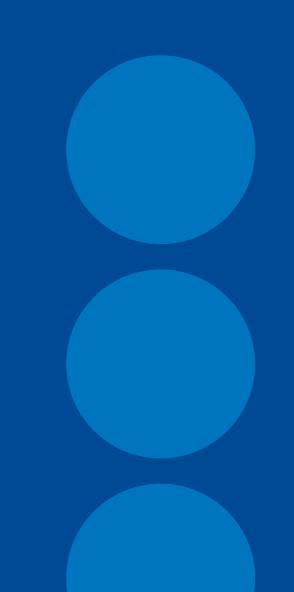


Kanisterprobenahmeverfahren

Kanister-Methode zur Bestimmung von Ethylenoxid			
Validierter Arbeitsbereich	0,010 bis 2 ppm (18 - 3600 μg/m³)		
Bestimmungsgrenze	0,001 ppm (1,8 μg/m³)		
Lagerstabilität	14 Tage		
Erweiterte Messunsicherheit	15 %		

- Arbeitsplatzmessungen in verschiedenen Arbeitsbereichen
- Ergebnisse von < BG bis 11 ppm (extrapoliert)
- Produktion: TK eingehalten
- Vertrieb: TK überschritten bei Abfüllung von Großfässern und Flaschenreinigung
- Sterilisation: in der Nähe von Kammern TK deutlich überschritten

Vielen Dank für Ihre Aufmerksamkeit.


Dank an alle beteiligten Kolleg:innen

Ronja Schustkowski, Brigitte Maybaum, Krista Gusbeth

Benedikt Thomas, Julia Linke

Dr. Marco Steinhausen

Dr. Cornelia Wippich, Wolfgang Schneider

Gibt es Fragen oder Anregungen?

Kontakt:

Franziska Nürnberger franziska.nuernberger@dguv.de oder ringversuche@dguv.de Tel. +49 30 13001 3299

Aktuelle Informationen/Anmeldung zu Ringversuchen unter:

https://www.dguv.de/ifa/fachinfos/ringversuche/index.jsp

https://ifa-ringversuche.quodata.de/de/user/login