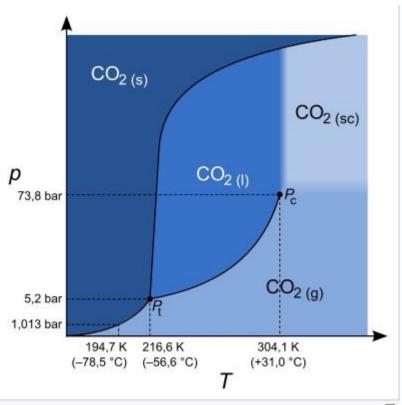


Eiskalter Killer Trockeneis?

Gefährdung durch Kohlendioxid


Erfahrungsaustausch der Gefahrstoffmessstellen 27. September 2023 Hamburg

Messstelle Gefahrstoffe, Zentrallabor Dr. Theresa Wiesemeier

Was ist Trockeneis?

- Phasendiagramm von Kohlenstoffdioxid (nicht maßstabsgerecht), P_t ist der Tripelpunkt und P_c der kritische Punkt.
- Quelle: https://de.wikipedia.org/wiki/%C3%9Cberkritisches_Kohlenstoffdioxid

- weißer, wassereisähnlicher Feststoff
- ("gefrorenes Kohlendioxid")
- sublimiert bei Normaldruck bei -78,48 °C
 - bei 5,2 bar ab weniger als -56,6 °C flüssig
- Volumenvergrößerung auf das 760fache

Woher kommt Trockeneis?

Herstellung:


- durch Entspannung von unter Druck verflüssigtes Kohlendioxid entsteht sogenannter Kohlensäureschnee
- prinzipiell Funktionsweise von CO₂-Löschern

Anbieter:

- jederzeit und überall und in jeder Größe
- Amazon, Ebay, Linde, ...

Trockeneis Pellets 3 mm

Quelle: http//:trockeneis-shop.de

Trockeneis Cryobags (verpackt)

Trockeneis Micropellets 1,5 mm

Gastronomie & Events

Verwendung von Trockeneis

Einsatz von Trockeneis als Kühlmittel in unterschiedlichen Bereichen,

- bei Lebensmittellagerung und -transport,
- im Gesundheitswesen (z. B. Transport von Impfseren),
- im Gastgewerbe,
- zu Reinigungszwecken (Trockeneis-Strahlen),
- in der Unterhaltungsbranche (Nebeleffekte)

Insbesondere beim Transport von Lebensmitteln sind in den letzten Jahren deutliche Steigerungen beim Einsatz von Trockeneis zu verzeichnen.

Internetbestellungen von Lebensmitteln (TK-Ware), Tierfutter sowie Arzneimittel

Wirkung von Kohlendioxid

CO ₂ –Anteil in der Atemluft	Gefährdung und Auswirkung bei zunehmender CO ₂ - Einwirkung
ca. 0,5 bis 1 Vol%	Bei nur kurzzeitiger Einatmung generell noch keine besonderen Beeinträchtigungen der Körperfunktionen.
ca. 2 bis 3 Vol%	Zunehmende Reizung des Atemzentrums mit Aktivierung der Atmung und Erhöhung der Pulsfrequenz.
ca. 4 bis 7 Vol%	Verstärkung der vorgenannten Beschwerden; zusätzlich Durchblutungsprobleme im Gehirn, Aufkommen von Schwindelgefühl, Brechreiz und Ohrensausen.
ca. 8 bis 10 Vol%	Verstärkung der vorgenannten Beschwerden bis zu Krämpfen und Bewusstlosigkeit mit kurzfristig folgendem Tod.
über 10 Vol%	Tod tritt kurzfristig ein.

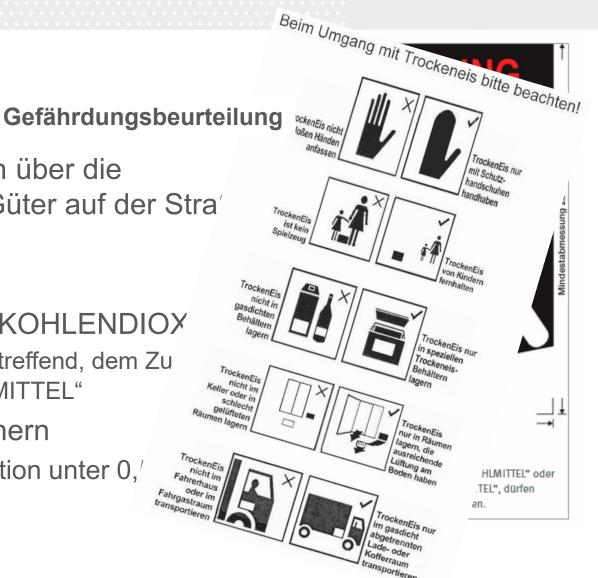
Quelle: Sicherer Betrieb von Getränkeschankanlagen, Arbeitssicherheitsinformation (ASI) 6.80

Unfallgeschehen - Transport

Unfallbericht aus dem BGN / Report 2/2014

Tod durch Trockeneis

Gefahrgutvorschriften


Gefahrgut-Einstufung: Trockeneis

 nach dem Europäischen Übereinkommen über die internationale Beförderung gefährlicher Güter auf der Straf (ADR) als UN 1845 aufgeführt

 Versandstück mit Trockeneis Schriftzug "KOHLENDIOX FEST" oder "TROCKENEIS" und, sofern zutreffend, dem Zu KÜHLMITTEL" bzw. "ALS KONDITIONIERUNGSMITTEL"

• in gut belüfteten Fahrzeugen und Containern

• "Gut belüftet" nach ADR = CO₂-Konzentration unter 0,

CO₂-Konzentration beim Transport von TK-Ware Trockeneis im Backbetrieb

Theoretische Betrachtung der Kohlendioxidkonzentration:

- 1 kg Trockeneis sublimiert vollständig zu 0,541 m³ Kohlendioxid
 - vollständige Sublimation von 1 kg Trockeneis ergibt rechnerisch eine max.
 Kohlendioxidkonzentration von 4,5 Vol.-% CO₂ bei Laderaumvolumen von 12 m³
- Sublimationsrate aus der Praxis: ca. 8 Liter pro Stunde pro kg Trockeneis
 - Quelle: www.gefahrgut-online.de/trockeneisrechner
 - bei Beladung von 50% des Laderaumes, Zeitdauer 2 Stunden und Verwendung von 13 kg Trockeneis: 3,5 Vol.-% Kohlendioxidkonzentration

Trockeneis im Backbetrieb - Lieferfahrzeug

- Abbildung typisches Sommer-Szenario
- zusätzlich zur Kühlbox mit
 Tiefkühlbrezeln und einem
 Trockeneis-Cryobag à 1 kg weitere
 6 Kühlboxen à 2 kg verpacktes,
 gefrorenes CO₂ im Laderaum des
 Lieferfahrzeuges verstaut
- CO₂-Konzentration in Fahrerkabine bei räumlicher Trennung zum Laderaum: 630 ppm

Trockeneis im Backbetrieb - Befund: Lieferfahrzeug

Laderaum:

Rückblick

Fachbereich AKTUELL Veröffentlichung Mai 2020

DGUV (Herausgeber)

Sachgebiet "Postsendungen" im Fachbereich "Handel und Logistik"

BG Rohstoffe und Chemische Industrie

> BG Handel und Warenlogistik (выни)

BG Nahrungsmittel und Gastgewerbe (BGN)

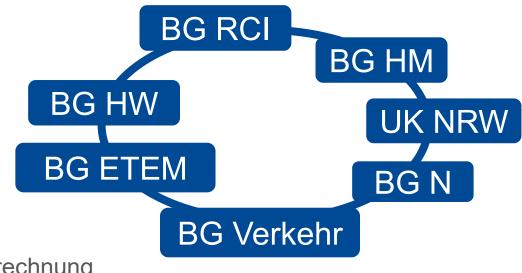
BG Verkehrswirtschaft
Post-Logistik
Telekommunikation
(BG Verkehr)

Rückblick: Impfstofftransport BioNTec

Anfrage Unfallkasse Berlin per Mail am 18.12.2020

Beschaffenheit eines gut belüfteten Raumes bei Containerlösungen oder Nachrüstung von Absaugung in vorhandenen Räumlichkeiten (Altenheime)?

Veröffentlichung 23.12.2020


DGUV Information "Trockeneis"

Inhaltlicher Rahmen:

Thema "Trockeneis" liefert Stoff genug für eine eigene DGUV-Information

Herstellung von Trockeneis

- Trockeneisstrahlen/Reinigen
- Nebeleffekte
- Messtechnik
- Berechnung der Kohlendioxidkonzentration
 - Berechnung gemäß BIA-Report 3/2001 unter Zuhilfenahme eines Excel-Tools von Linde zur Berechnung des Verdampfungsverlustes von Trockeneis

15

Experimentelle Untersuchungen und Messtätigkeiten

Evaluation der Sublimationsrate von Trockeneis in Styroporboxen

Berechnung der CO₂-Konzentration im Laderaum nach BIA-Report 3/2001

Praxisvergleiche – Trockeneistransport im PKW

Herstellung von Trockeneis

Berechnungsgrundlagen "excel-tool"

Trockeneisverlust durch Verdampfung beim Lagern! Isolierbehälter: Material Polystyrol EPS (z.B. Styropor) Innen-Mass / L 270 Innen-Mass / B 460 mm Innen-Mass / H 260 mm Isolation-Stärke 48 mm Aussen- / Umgebungstemperatur -78.00 Trockeneistemperatur Wärmeleitfähigkeit 0,022 W/(m·K) $W/(m^2 \cdot K)$ 0,458 Wärmedurchgangskoeffizient Transport- bzw. Lagerzeit 1,00 Std. Sicherheitsfaktor 1.20 (Ein 20%iger Sicherheitsfaktor ist empfohlen.) M Verlust durch Verdampfung 0,190 kg Berechnungsformel: Die Formel gilt bei homogener Verpackung. Wärmeeinfall durch defekte Isolation und undichte

Deckeldichtungen sind nicht berücksichtigt.

١,	M =		l	$U * A * \Delta T * t * S$			wobei	U =	λ	
Ľ				$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		d				
	М		=	benötigt	e Menge Trock	eneis [kg]				
	Α		=	Innen-O	berfläche-Isolie	rbehälter	[m ²]			
	ΔΤ		=	Tempera	aturdifferenz zw	vischen Au	ssen- und Innen	temperatur [K]		
	t		=	Lager -	bzw. Transport	zeit [Std.]				
	S		=	Sicherhe	eitsfaktor [-]					
	h		=	Kälteleis	stung pro kg Tro	ockeneis [6	640 kJ/kg]			
	U = Wärmedurchgangskoeffizient-Isolierbehälter (U-Wert) [W/(m ² ·K)]									
	λ		= Wärmeleitfähigkeit-Isolierbehälter [W/(m·K)]							
	d	d = Wandstärke-Isolierbehälter [m]								
	Wärmeleitfähigkeit-Isolierbehälter bei -78°C :									
	λ		=	0,022	Polystyrol EPS	S (z.B. Sty	ropor)	Rohdichte: 20	kg/m ³	
	λ		=	0,024	Polyurethan P	UR - Harts	chaum	Rohdichte 45	bis 60 kg/m³	

Achtung: Verlust ist unabhängig von Trockeneismenge!!!!

https://www.pangas.ch/de/images/Berechnungsprogramm Trockeneis tcm553-114274.xls

Trockeneisverlust durch Verdampfen beim Lagern

- Temperaturdifferenz relativ konstant: Winter 0°C bis Sommer 30°C bedeutet ein ΔT in Formel von 78 – 108 K ⇒ Einfluss auf Verlust gering
- ordnungsgemäß verschlossene, dafür vorgesehene Transportboxen aus Styropor usw.
 - Druckausgleich!
- Volumen der Stauräume der Transporter sind recherchierbar
 - Anzahl der Transportboxen?
 - Raumvolumen des Laderaumes?
 - Anteil des Eigenvolumens der Transportboxen?

Berechnung: Wie hoch ist die Kohlendioxidkonzentration nach x Stunden beim Entladen?

30.10.2023 1

Evaluation - Literatur

- BG RCI Veröffentlichung (Telgmann; Ermittlung des Gewichtsverlust bei Lagerung)
 - Styroporbox (6,9 Liter Innenvolumen, 4,35 kg Trockeneis)
 - Ergebnis Experiment: <u>60g/h</u> Trockeneis sublimieren;
 - excel-Tabelle: 70g/h Verlust durch Verdampfung
- Sublimation Rate of Dry Ice Packaged in Commonly Used Quantities by the Air Cargo Industry (Technical report, 08/2006)
 - Jeweils 5 lb = **2,27kg** (Trockeneis Pellets) wurden in 20 TheromoSafe model 318 (Innenvolumen 3,3 Liter) gegeben und ein Flug in einer Unterdruckkammer simuliert, nach 6,25 h wurde erneut gewogen.
 - Ergebnis: Sublimationsrate (= Gewichtsverlust) von 2,0 % pro Stunde (~46g/h)
 - excel-Tabelle: 55g/h;

Trockeneisverbrauch / Emissionsraten

	Innen- volumen [L]	Isolations- stärke [mm]	Temperatur	Versuchsdauer [h]	berechneter Trockeneisverlust [g/h]	tatsächlicher Trockeneisverlust [g/h]	Anteil [%]
	12,4	52	21°C	20 1/4 *	91	62	68
Box A			max. 24°C	3	94	83	88
			max. 34°C	5	103	85	83
Box B	6,4	45	21°C	20 1/4 *	69	49	71
BOX B			max. 24°C	3	71	62	87
Box C	24.0	41	max. 34°C	5	275	122	44
(Gastronomiebedarf)	34,8	41	max. 34 C	5	275	IZZ	44
Box D	4.4.4	20	21°C	3	387	216	56
(Gastronomiebedarf)	44,1	30	max. 31°C	16 ½ *	426	284	67

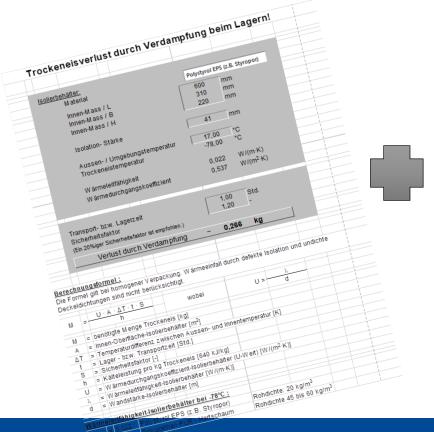
^{*} Diese Versuche wurden über Nacht in den Laborräumen, ohne Transport im PKW, durchgeführt.

Experimentelle Untersuchungen und Messtätigkeiten

Evaluation der Sublimationsrate von Trockeneis in Styroporboxen

 die experimentell ermittelten Emissionsraten liegen weit unter den berechneten Emissionsraten

Berechnung der CO₂-Konzentration im Laderaum nach BIA-Report 3/2001


Praxisvergleiche – Trockeneistransport im PKW

Herstellung von Trockeneis

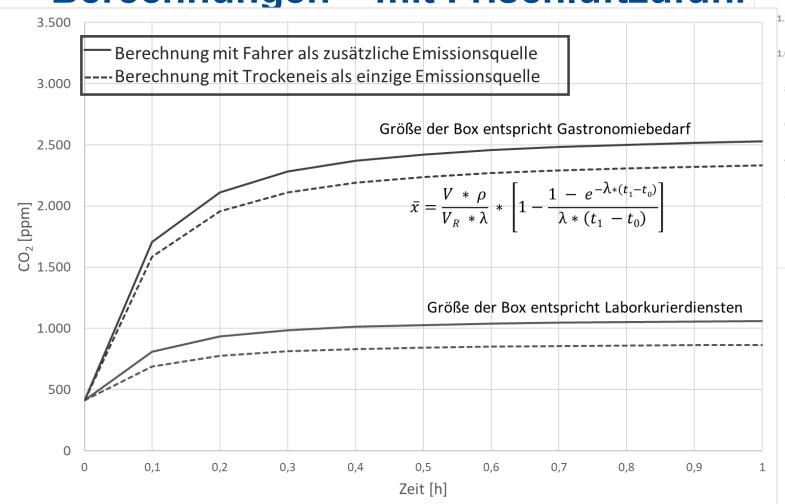
Berechnungsgrundlagen

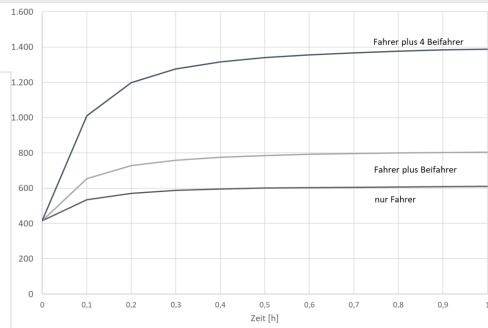
Die gesamte Emissionsrate CO₂ (transportiertes Trockeneis (Pan-Gas Excel-Tool) + Fahrer) kann mit der mittleren CO₂ -Konzentration im Raum nach BIA-Report 3/2001 verknüpft werden.

$$\bar{x} = \frac{V * \rho}{V_R * \lambda} * \left[1 - \frac{1 - e^{-\lambda * (t_1 - t_0)}}{\lambda * (t_1 - t_0)} \right]$$

 x^{-} = Konzentration [mg/m³]

V*p = Emissionsrate [g/h]


 $V_R = Raumvolumen [m^3]$


λ = angenommene Luftwechselzahl [h⁻¹]

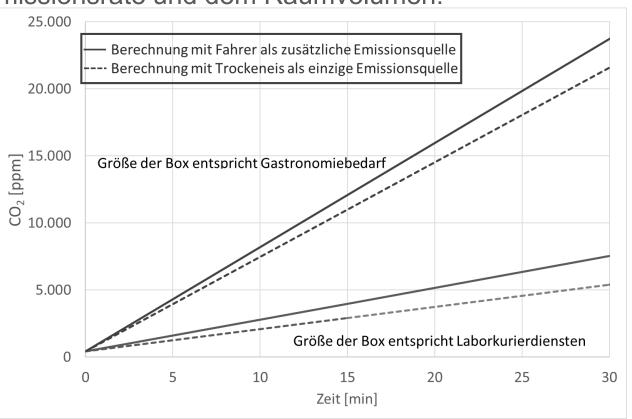
 (t_1-t_0) = Anfang/Ende Berechnungsintervall [h]

Berechnungen – mit Frischluftzufuhr

Nach Rietschel liegt der CO₂-Ausstoß eines Menschen bei einer leichten, überwiegend sitzenden Tätigkeit (Fahrer) bei **20** I/h. Nach dem idealen Gasgesetz entspricht das unter Normbedingungen einer Emissionsrate durch den Fahrer von 39,3 g/h.

Berechnungen – ohne Frischluftzufuhr

Ermittlung des momentanen Kohlendioxidgehaltes im stehenden Fahrzeug, d.h. keine

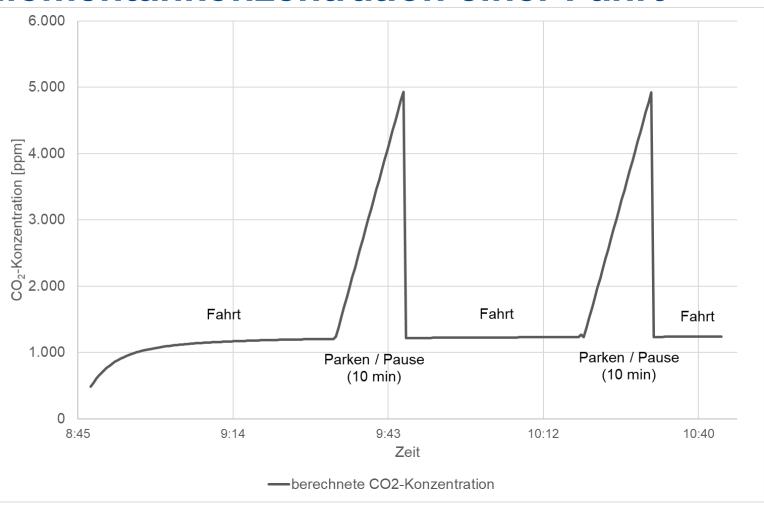

Frischluftzufuhr im Fahrgastraum, aus der Emissionsrate und dem Raumvolumen:

$$CO_2[Vol. -\%] = \frac{V*p}{V_R*18,3}* (t_1 - t_0) + CO_{2(Außen)}$$

V*p = Emissionsrate [g/h]

 $V_R = Raumvolumen [m^3]$

 (t_1-t_0) = Anfang/Ende Berechnungsintervall [h]



30.10.2023 24

Berechnung der CO₂-Momentankonzentration einer Fahrt

Berechnung und Darstellung: theoretische Verlauf der CO₂-Momentankonzentration für jede Versuchsreihe (Fahrt inklusive Unterbrechungen)

30.10.2023 25

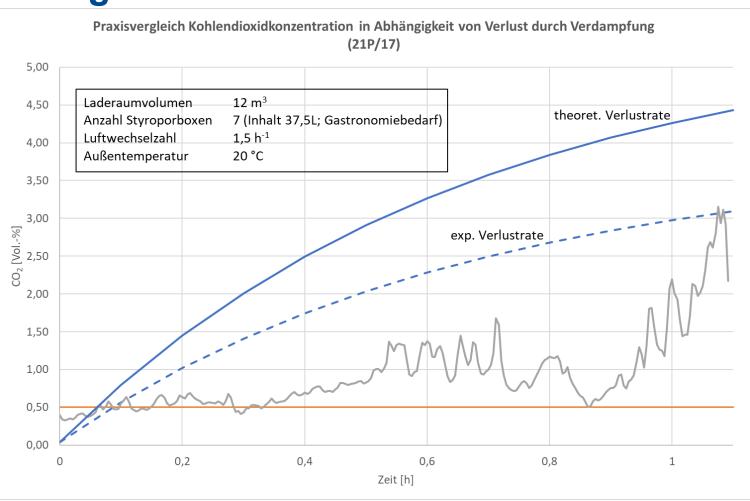
Experimentelle Untersuchungen und Messtätigkeiten

Evaluation der Sublimationsrate von Trockeneis in Styroporboxen

 die experimentell ermittelten Emissionsraten liegen weit unter den berechneten Emissionsraten

Berechnung der CO₂-Konzentration im Laderaum nach BIA-Report 3/2001 ✓

Praxisvergleiche – Trockeneistransport im PKW


Herstellung von Trockeneis

Experimentelle Untersuchungen

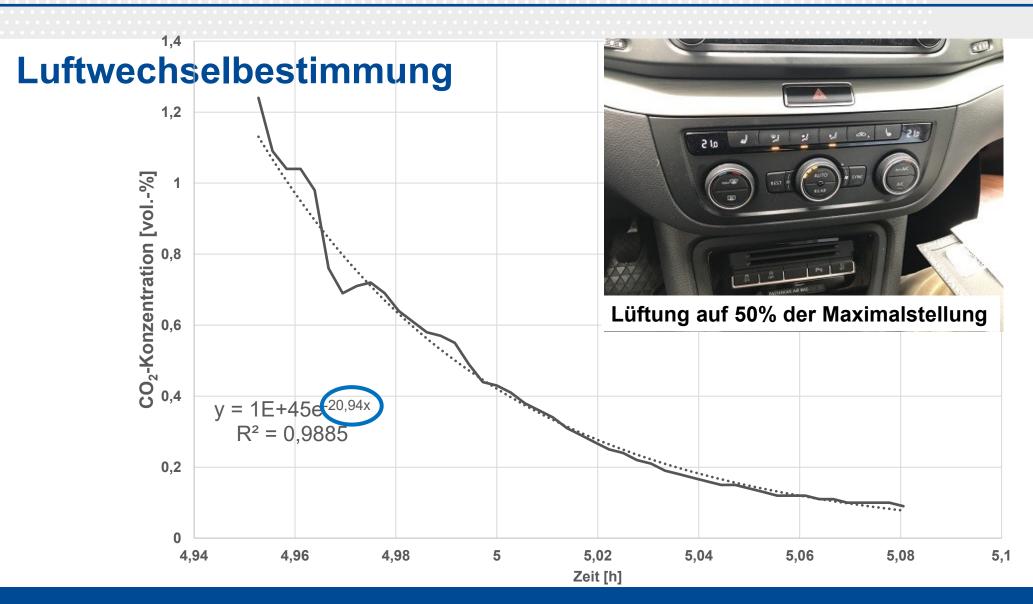
Praxisvergleich
Berechnungsbeispiel 21P/17
(Auslieferung TK-Ware Bäckerei)

- keine homogene Verteilung des CO₂
- Belüftung über Dachventilator
- Be- und Entladetätigkeiten
- Undichtigkeiten, Leckagen u.a.

Experimentelle Untersuchungen

Trockeneistransport im PKW (Laborfahrdienste - Ausnahme)

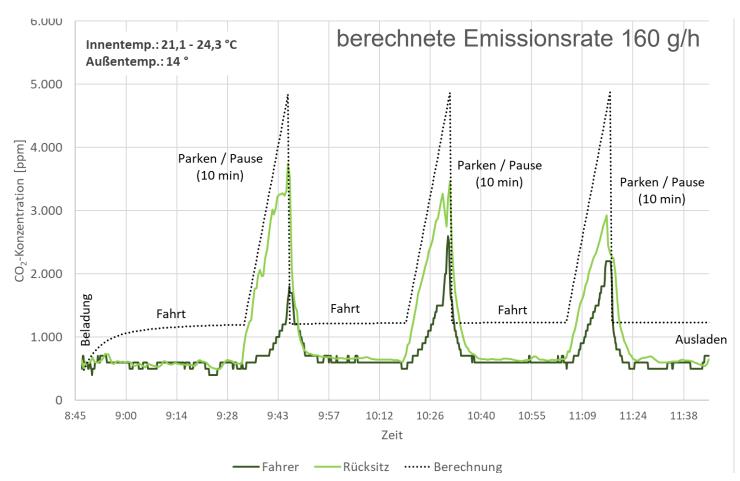
Entwurf DGUV-Info "Umgang mit Trockeneis":


"Der Transport geringer Mengen Trockeneis kann unter bestimmten Bedingungen einen Sonderfall darstellen, bei dem auch ein Fahrzeug ohne Trennung von Fahrerhaus und Laderaum verwendet werden kann."

Versuchsbeschreibung: Die Versuche wurden im fahrenden Auto auf einer, an eine reale Labordienstfahrt oder Catererfahrt angelehnte, "Modellroute" und im stehenden Auto mit und ohne Person ("Fahrer") durchgeführt.

- verschiedene PKW (Lüftung 50%, ohne Klimatisierung)
 LWZ ~ 20 bis 48 h⁻¹
- Trockeneis in Form kleiner Pellets (große Oberfläche) in verschiedenen Styroporboxen
- Maximalmenge an Trockeneis 5kg
- Versuchsdauer 2 bis 4 Stunden, bei einer Außentemperatur von 13 19°C (Innen bis 33,8°C)

30.10.2023 28



30.10.2023 29

CO₂ – Simulation einer Laborkurierfahrt

CO₂ – Simulation einer Catererfahrt

30.10.2023 31

Ergebnisse / Fazit

	Smart	Toyota	
Innenraumvolumen	1,1 m ³	6,7 m ³	6,7 m ³
LWZ	50	36	36
berechnete Emissionsrate	342 g/h	342 g/h	293 g/h
berechnete CO ₂ -Konzentration	4.700 ppm	1.400 ppm	1.100 ppm
ermittelte Emissionsrate	250 g/h	250 g/h	125 g/h
berechnete CO ₂ -Konzentration	3.200 ppm	1.100 ppm	800 ppm
ermittelte CO ₂ -Konzentration	940 ppm	860 ppm	810 ppm

Experimentelle Untersuchungen - Fazit

Die Versuche konnten folgendes zeigen:

- bei 50% der Lüftungsleistung (21facher Luftwechsel) ändert sich der Verlauf der Kohlendioxidkonzentration während der Fahrt kaum
- die Verteilung von Kohlendioxid im Fahrinnenraum ist bei eingeschalteter Lüftung nahezu homogen
- je nach Größe der Transportboxen werden maximal 1.200 ppm CO₂ beim Fahrer während der Fahrt gemessen
- das Öffnen, Be- und Entladen der Trockeneiskisten hat nur geringen bis keinen Einfluss auf CO₂-Konzentration im Innenraum
- in Pausen mit ausgeschalteter Lüftung steigt die Kohlendioxidkonzentration in Abhängigkeit der Pausenzeit, Menge des freigesetzten Kohlendioxids und Temperaturdifferenz rasch an

Die Ergebnisse zeigen, dass unter den vorgefundenen Randbedingungen bei kontrollierter Außenluftzufuhr (hier: 50% der Lüftungseinstellung) keine inhalative Gefährdung durch entweichendes Kohlendioxid besteht.

30.10.2023 33

Experimentelle Untersuchungen - Benefit

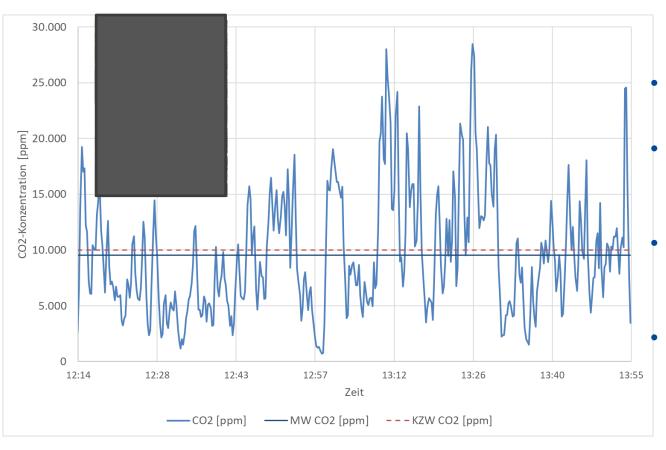
Für die Gefährdungsbeurteilung muss die Gefahr durch austretendes Kohlendioxid berücksichtigt werden.

- Mit den Excel-Vorlagen besteht die Möglichkeit die momentane bzw. die mittlere Kohlendioxidkonzentration im Fahrgastraum in Abhängigkeit zurzeit, zum Innenraumvolumen des jeweiligen PKW, zur Emissionsrate der verwendeten Trockeneisboxen und zur Temperatur beurteilen zu können.
- Die Versuche konnten zeigen, dass man rechnerisch auf der sicheren Seite ist, d.h. es wird für die jeweils geltenden Randbedingungen das Worst-Case-Szenario berechnet.

Experimentelle Untersuchungen und Messtätigkeiten

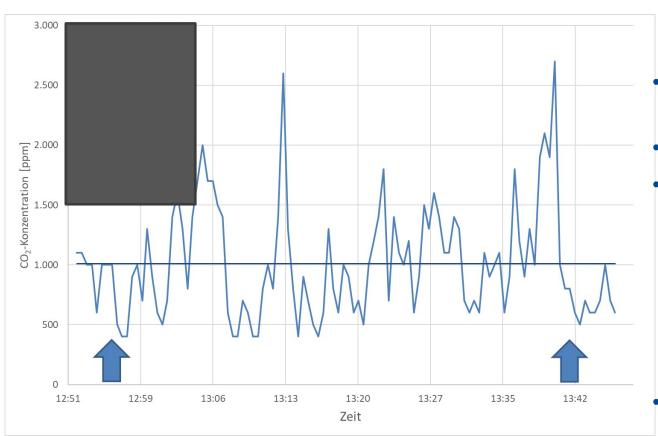
Evaluation der Sublimationsrate von Trockeneis in Styroporboxen

 die experimentell ermittelten Emissionsraten liegen weit unter den berechneten Emissionsraten


Berechnung der CO₂-Konzentration im Laderaum nach BIA-Report 3/2001 ✓

Praxisvergleiche – Trockeneistransport im PKW ✓

Herstellung von Trockeneis


Trockeneis - Herstellung - Eigenbedarf

- Kohlendioxidkonzentrationen schwanken zwischen 700 und 28.000 ppm, im Mittel bei 9.500 ppm
- diskontinuierlicher Auswurf der Trockeneispellets sowie leichte Windstöße führen zu einer schnellen Verdünnung
- nahe des KZW von CO₂ von 10.000 ppm, aber nicht repräsentativ für den Aufenthaltsort des Beschäftigten und überschätzt somit seine Exposition
- Aufenthaltsdauer des Beschäftigten direkt am Trockeneispelletizer max. 4 x < 30 sec

Trockeneis - Herstellung - Eigenbedarf

- Messung inklusive zweier Wechsel der Container zum Auffangen der Trockeneispellets
- mittlere Kohlendioxidkonzentration 1.000 ppm
- Wechsel des Auffangbehälters für die Trockeneispellets unterhalb der Ansprechzeit des direktanzeigenden Messgerätes
 - Messwerteinstellzeit bei metrologischer Rückführung mit einem zertifiziertem Prüfgas: CO₂-Messgerät der Fa. Vaisala 45 sec und Dräger X-am 5600 ca. 20 sec
 - Schutzmaßnahmen ausreichend (im Freien)

ASCO CO₂ Rückgewinnungsanlagen (RRS)

ASCO CO₂ Rückgewinnungsanlagen sind dazu ausgelegt, das von den **ASCO** Trockeneis-Pellet- und Blockmaschinen zurückkehrende CO₂ Gas zurückzugewinnen, welches ansonsten als zurückgeführtes Gas in die Atmosphäre abgegeben wird.

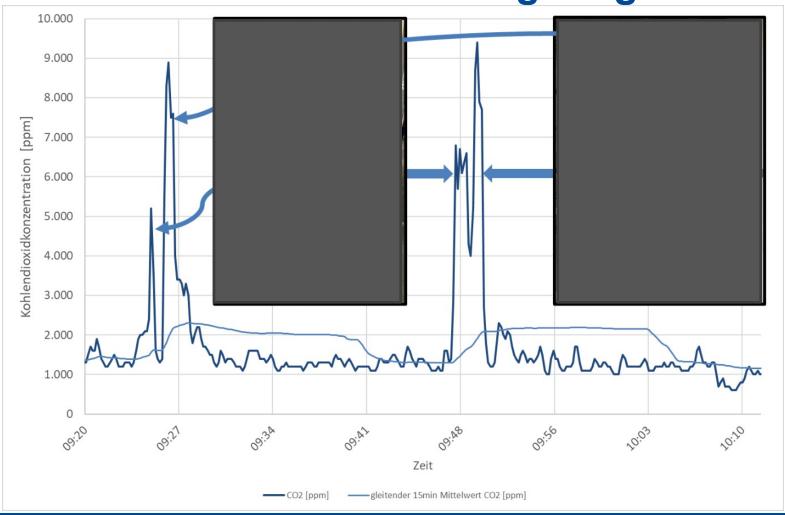
Vorteile der ASCO CO₂ Rückgewinnungsanlagen:

- Reduziert die Trockeneiskosten um bis zu 50 % durch Rückgewinnung des CO₂ Gases, welches bei der Entlüftung verloren gehen würde.
- Vollautomatische Funktion mittels SPS
- Strapazierfähiges, kompaktes und effizientes Design
- Für die schnelle Installation verpackt, vorverrohrt und vorverdrahtet.

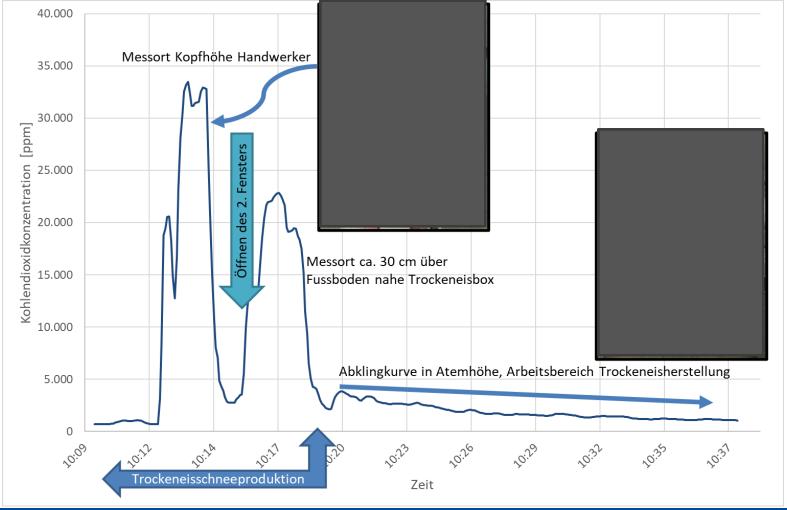
Bei der Trockeneisproduktion beträgt die Umwandlungsrate von CO₂ in Trockeneis nur ca. 40 - 45 Prozent. D.h. 55 - 60 % des CO₂ gehen dabei verloren. **Mit einer ASCO CO₂-Rückgewinnungsanlage (RRS) kann der grösste Teil des CO₂ zurückgewonnen werden.** Dies führt schlussendlich zu einer Umwandlungsrate von 90 - 95 Prozent.

1 kg Trockeneis entsprechen 0,5 m³ CO₂

rechnerisch bei Produktion von 100 kg pro Stunde 55 bis 60 kg Verlust 27,5 bis 30 m³ CO₂ pro Stunde


mit Rückgewinnung: immer noch bis 5 m³ pro Stunde!

ASCO Produktionskapazität: 30 kg/Stunde bis 750 kg/Stunde

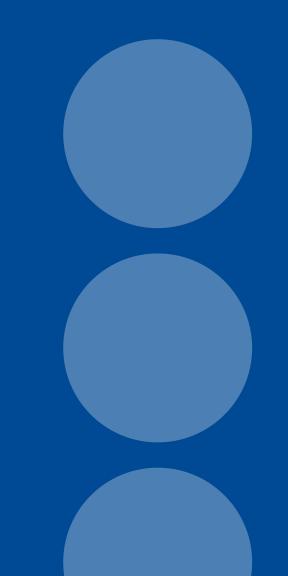

Trockeneis - Herstellung - Eigenbedarf

- Messung inklusive zweier
 Trockeneiszugaben zum Teigkneter
 (Doppelspitze)
- max. CO₂-Konzentration 9.400 ppm
- Mittelung der personenbezogenen ermittelten Konzentration an Kohlendioxid ergibt unter der Vorrausetzung, dass alle 25 Minuten ein neuer Teig angesetzt wird, einen Schichtmittelwert von 1.700 ppm

Trockeneis – Herstellung - Eigenbedarf

- Start der Trockeneisproduktion: leichter Anstieg der CO₂-Konzentration in Atemhöhe von ca. 700 ppm auf 1.100 ppm
- deutlicher Anstieg der CO₂Konzentration über 3 Vol.-% in
 Kopfhöhe der Handwerker

Maßnahmen:


- Trockeneisherstellung im Freien
- Gefahrenbereich absperren
- Absaugung
- Betriebsanweisung / Unterweisung

Vielen Dank für Ihre Aufmerksamkeit.

